Assignment no.2

GA-II (III Semester)

MM:30

Attempt all questions. All carry equal marks.

Multiple choice questions

- 1. In young's experiment, the intensity at the central fringe is I. when one of the slit is closed, the intensity at that point become I_0 . they are related as
 - a. $I = I_0$
 - b. $I = 2 I_0$
 - c. I = 4 I₀
 - d. No relation
- 2. In Newton's ring experiment, it is essential that
 - a. the white light from a narrow slit falls normally on the film
 - b. the light from an extended source is incident normally on the film
 - c. the white light falls normally on the film
 - d. there must be only air and no other medium in between the lens and the plane glass plate.
- 3. An Oil floating on the surface of water appears colored in white light. the expected thickness of the film is
 - a. 100A⁰
 - b. 10000A⁰
 - c. 1mm
 - d. 1cm
- 4. In Newton's ring experiment , circular rings are formed
 - a. by division of amplitude
 - b. by division of wavelength
 - c. by diffraction
 - d. by polarization
- 5. In Newton's ring experiment, the expression for the measurement of wavelength is
 - a. $\lambda = D_{n+p}^2 D_n^2/4R$
 - b. $\lambda = D_{n+p}^2 D_n^2/4pR$
 - c. $\lambda = D_{n+p}^2 D_n^2 * 4pR$
 - d. $\lambda = 4R/D_{n+p}^2 D_n^2$
- 6. The condition of the destructive interference in the reflected part of light from a plate is
 - a. $2\mu t\cos r = (2n + 1)\lambda/2$,
 - b. $2\mu t \cos r = (2n 1) \lambda/2$
 - c. $2\mu t\cos r = n \lambda$
 - d. none
- 7. In Michelson's interferometer , the fringes are formed
 - a. circular at infinity
 - b. circular in the film in between the mirrors
 - c. straight and localized
 - d. of any shape and localized
- 8. The essential condition for fraunhoffer's class of diffraction is that
 - a. the incident wave front must be the plane
 - b. the incident wave front must be the spherical

- c. both the incident and diffracted wave front must be plane
- d. all of the above
- 9. The expression for the area of a half period zone is
 - a. $\pi b/\lambda$
 - b. $\lambda / \pi b$
 - c. *πbλ*
 - d. $2\pi b\lambda$
- 10. The centre of the image of a narrow circular disc illuminated from one side is
 - a. completely dark
 - b. bright
 - c. the bright or dark depending on its distance
 - d. nothing can be said
- 11. Diffraction of light is observed when the size of the obstacle is
 - a. very large
 - b. very small
 - c. howsoever large or small
 - d. comparable with the wavelength of light
- 12. The fundamental focal length for a zone plate is more for the
 - a. red color
 - b. violet color
 - c. green color
 - d. yellow color
- 13. The radius of half period zones are proportional to
 - a. 1/Vn
 - b. √n
 - c. n^{-3/2}
 - d. n^{3/2}
- 14. The difference in the average distance of a point from the two consecutive half period zones on the plane wave front corresponding to that point of observation is
 - a. λ/2
 - b. λ
 - c. λ/4
 - d. 2λ
- 15. If the radius of the first circle on a zone plate is r, it behaves like a convex lens for the light of wavelength λ whose multiple focal lengths are
 - a. r^{2}/λ , $2r^{2}/\lambda$, $3r^{2}/\lambda$
 - b. r^2/λ , $r^2/3\lambda$, $r^2/5\lambda$
 - c. r^2/λ , $r^2/2\lambda$, $r^2/3\lambda$
 - d. λ/r^2 , $\lambda/3r^{2}$, $\lambda/5r^2$
- 16. The condition of maxima in diffraction due to a single slit is
 - a. p = 0,π,2 π,3 π.....
 - b. $p = 0, 3/2 \pi, 5/2 \pi, 7/2 \pi$
 - c. p = 0,1/2 π, π,3/2 π.....
 - d. $p = 1/2 \pi, 3/2 \pi, 5/2 \pi$
- 17. The condition of minima in the diffraction due to a single slit is
 - a. $e\sin\theta = n\lambda$

- b. nesin θ = λ
- c. $e\sin\theta = 1/n \lambda$
- d. $(e+d)\sin\theta = n\lambda$
- 18. The total angular width of central maxima in the diffraction pattern due to single slit is
 - a. λ/a
 - b. $2a/\lambda$
 - c. 2a/3λ
 - d. $2 \sin^{-1} \lambda/a$
- 19. In a plane grating the width of the slit is equal to the width of its opaque part, the missing spectrum will be
 - a. first order
 - b. second order
 - c. third order
 - d. first & second order
- 20. For normal incidence on a grating , the condition of principal maxima is
 - a. $esin \theta = n \lambda$
 - b. $a \sin \theta = n \lambda$
 - c. $e\sin\theta = (2n + 1)\lambda/2$
 - d. $e = a \sin \theta$
- 21. The expression for the resolving power of a grating is
 - a. $\lambda/d\lambda = Nn$
 - b. $d\lambda/\lambda = nN$
 - c. $d\lambda/\lambda = t d\mu/d\lambda$
 - d. none
- 22. For the resolution of two spectral lines of same intensities I_0 , the intensity at the dip in the middle of their central maxima in the resultant intensity distribution must be
 - a. I_0
 - b. slightly less than I_0
 - c. slightly more than I_0
 - d. $0.81 I_0$ or less than it
- 23. The angular separation between the central maxima in the images of two objects is Φ and the half angular width of either of the central maxima is θ . the two images are said to be just resolved when
 - а. Ф<θ
 - b. Φ>θ
 - c. Φ=θ
 - d. none
- 24. The resolving power of a grating can be increased
 - a. by increasing the order of the spectrum
 - b. by increasing the no of lines on the grating
 - c. by increasing both
 - d. by increasing the ruled width of the grating
- 25. Maximum resolving power of a grating is
 - a. Wn/e
 - b. $W\lambda/e$
 - c. W/λ
 - d. nN

- 26. Which statement is more correct
 - a. the light waves are electromagnetic waves
 - b. light waves are the electromagnetic transverse waves with vibrations in all possible directions in a plane perpendicular to the direction of the propagation of light
 - c. polarized light waves have the property of symmetry about the direction of propagation of the light
 - d. sound waves in air can be polarized
- 27. The angle between the plane of vibration and the plane of polarization of a polarized light is
 - a. 0⁰
 - b. 90⁰
 - c. 180⁰
 - d. 45⁰
- 28. The phenomenon not exhibited by sound waves is
 - a. Diffraction
 - b. Polarization
 - c. Interference
 - d. beats
- 29. The incorrect statement regarding the ordinary and extraordinary wave
 - a. in a uniaxial crystal is both travel with different speed in all directions except along optic axes
 - b. both are plane polarized
 - c. both have spherical wave fronts
 - d. both have their plane of polarization mutually perpendicular to each other
- 30. In an uniaxial positive crystal
 - a. μ₀=μ
 - b. ,μ_o>μ_e
 - c. μ_o<μ_e
 - d. $\mu_o=2\mu_e$
- 31. An uniaxial double refracting crystal is
 - a. Calcite
 - b. Topaz
 - c. Aragonite
 - d. all of the above
- 32. Polaroids are constructed from
 - a. calcite crystal
 - b. quartz crystal
 - c. tourmaline crystal
 - d. iodosulphate of quinine
- 33. In a nicol prism, at the Canada balsum layer
 - a. O-ray trvels from denser to rarer medium
 - b. E- ray travel from denser to rarer medium
 - c. O-ray does not suffer total internal reflection
 - d. E-ray suffers total internal reflection
- 34. The refractive index of O &E-rays are respectively
 - a. 1.658, 1.486
 - b. 1.486,1.658

- c. 1.550,1.330
- d. 1.330,1.550
- 35. The half wave plate produces a phase difference between the O & E ray is equal to
 - а. П
 - b. π/2
 - c. π/4
 - d. 3π/2
- 36. The thickness of half wave plate is given as
 - a. $t=2/\lambda(\mu_{o}-\mu_{e})$
 - b. $t=4/\lambda(\mu_{o}-\mu_{e})$
 - c. $t=\lambda/2(\mu_{o}-\mu_{e})$
 - d. $t=\lambda/4(\mu_{o}-\mu_{e})$
- 37. A plane polarized light is incident normally on a quarter wave plate and the plane of polarization makes an angle 45[°] with the optic axis. The emergent light is
 - a. circularly polarized
 - b. elliptically polarized
 - c. plane polarized
 - d. unpolarised
- 38. A light beam when passed through a rotating nicol, there is no variation in the intensity of emergent light, the light beam is
 - a. circularly polarized
 - b. elliptically polarized
 - c. plane polarized
 - d. unpolarised
- 39. Brewster's law can be expressed as
 - a. μ = tan r
 - b. $\mu=1/tan r$
 - c. $\mu = \tan I$
 - d. tani = $1/\mu$
- 40. A zone plate has
 - a. a single focus
 - b. two foci
 - c. no focus
 - d. multiple foci
- 41. The bending of light at the corners of an obstacle is called as
 - a. Interference
 - b. Diffraction
 - c. Scattering
 - d. dispersion
- 42. In an interference pattern, points of minimum intensity are perfectly dark but in the diffraction pattern the point of minimum intensity are also
 - a. perfectly dark
 - b. not perfectly dark
 - c. uniformly distributed intensity
 - d. none of the above
- 43. The central fringe in fresnel's biprism is

- a. Bright
- b. Dark
- c. first bright then dark
- d. first dark then bright
- 44. Two coherent sources of light will produce constructive interference when the phase difference between them is
 - а. П
 - b. 2π
 - c. 3/2π
 - d. 1/2π
- 45. In Newton's ring experiment the diameter of the rings are proportional to
 - a. λ
 - b. λ^2
 - c. √λ
 - d. 1/vλ

46. Law of malus is

- a. $I = I \cos^2 \theta$
- b. $I = I \cos \theta$
- c. $I = I \sin^2 \theta$
- d. $I = I \sin \theta$
- 47. Two light beam of intensities I and 4I produce interference. The maximum and minimum possible intensities of the resultant beam will be
 - a. 51,31
 - b. 51,1
 - c. 91,1
 - d. 91,31
- 48. A grating has 15000 lines per inch , the grating element will be in cm
 - a. 1.693*10⁻⁴
 - b. 1.693*10⁻⁵
 - c. 1.693*10⁻⁶
 - d. 1.693*10⁻⁷
- 49. A grating has 7000 lines per cm. for normal incidence of a parallel beam of light of wavelength 5000A⁰, the maximum no of order seen are
 - a. 1
 - b. 3
 - c. 2
 - d. 2.857
- 50. A ray of light is incident on the surface of a glass plate of refractive index1.55 at the polarizing angle, the angle of refraction is
 - a. 0⁰
 - b. 57⁰
 - c. 32⁰
 - d. 157⁰

Answer sheet for Assignment no.2

Name.....

do not over write, write answer clearly

Roll no.....

1	1	11	21	31	41	
2	1	12	22	32	42	
3	1	13	23	33	43	
4	1	14	24	34	44	
5	1	15	25	35	45	
6	1	16	26	36	46	
7	1	17	27	37	47	
8	1	18	28	38	48	
9	1	19	29	39	49	
10	2	20	30	40	50	

Maximum marks: 50

Marks obtained:.....

Answer sheet for Assignment no.2

Name.....

do not over write, write answer clearly

Roll no.....

1	11	1	21	31	41	
2	12	2	22	32	42	
3	13	3	23	33	43	
4	14	1	24	34	44	
5	15	5	25	35	45	
6	16	5	26	36	46	
7	17	7	27	37	47	
8	18	3	28	38	48	
9	19	9	29	39	49	
10	20)	30	40	50	

Maximum marks: 50

Marks obtained:....